Login / Signup

Ethanol Production from Colpomenia sinuosa by an Alginate Fermentation Strain Meyerozyma guilliermondii.

Wen ZhangYuqin MaoZhiwei LiuMengjie Wang
Published in: Indian journal of microbiology (2021)
With the consumption of energy and the spread of COVID-19, the demand for ethanol production is increasing in the world. The industrial ethanol fermentation microbes cannot metabolize the alginate component of macro algae, which affects the ethanol yield. In this research, the ethanol production process from macro algae by an alginate fermentation yeast Meyerozyma guilliermondii, especially the pretreatment process of Colpomenia sinuosa, was studied. At the same time, the experimental design of Box-Behnken was carried out to achieve the optimum fermentation performance. The concentration of KH2PO4 (A: 2-6 g.L-1), pH (B: 4-7), reaction time (C: 60-120 h) and temperature (D: 24-34 °C) were variable input parameters. During the ethanol production process, the algae powder was firstly mixed with water at 90 °C for 0.5 h. Later the fermentation culture medium was prepared and then it was fermented by the yeast Meyerozyma guilliermondii to produce ethanol. And the optimal fermentation parameters were as follows: fermentation temperature of 28 °C, KH2PO4 dosage of 4.7 g.L-1, initial pH of 6, and fermentation time of 99 h. The ethanol yield reached 0.268 g.g-1 (ethanol to algae), close to the predicted value of model. The generation of alginate lyase during the fermentation of algae was also examined. The highest alginate lyase activity reached 46.42 U.mL-1.
Keyphrases
  • saccharomyces cerevisiae
  • lactic acid
  • sars cov
  • wound healing
  • heavy metals
  • wastewater treatment