Psychological stress, a state of mental strain caused by mentally or physically threatening situations, plays a significant role in Parkinson's disease (PD). Motor symptoms worsen during acute stress and common non-motor symptoms in PD, such as anxiety and depression, are linked to chronic stress. Although evidence in humans is lacking, animal models of PD suggest that chronic stress can accelerate dopaminergic cell death. This suggests that stress-reducing interventions have not only symptomatic, but perhaps also disease-modifying effects. Our objective was to identify the most promising strategies for stress-reduction in PD and to analyze their potential value for disease-modification. An unstructured literature search was performed, primarily focusing on papers published between 2020-2023. Several large clinical trials have tested the efficacy of aerobic exercise and mindfulness-based interventions on PD symptoms. The evidence is promising, but not definitive yet: some exercise trials found a reduction in stress-related symptoms, whereas others did not or did not report it. In the majority of trials, biological measures of stress and of disease progression are missing. Furthermore, follow-up periods were generally too short to measure disease-modifying effects. Hence, mechanisms underlying the intervention effects remain largely unclear. These effects may consist of attenuating progressive neurodegeneration (measured with MRI-markers of substantia nigra integrity or cortical thickness), or a strengthening of compensatory cerebral mechanisms (measured with functional neuroimaging), or both. Lifestyle interventions are effective for alleviating stress-related symptoms in PD. They hold potential for exerting disease-modifying effects, but new evidence in humans is necessary to fulfill that promise.
Keyphrases
- physical activity
- cell death
- clinical trial
- systematic review
- randomized controlled trial
- magnetic resonance imaging
- multiple sclerosis
- cardiovascular disease
- metabolic syndrome
- magnetic resonance
- machine learning
- squamous cell carcinoma
- mental health
- risk assessment
- brain injury
- intensive care unit
- optical coherence tomography
- liver failure
- cell proliferation
- radiation therapy
- chronic pain
- high intensity
- open label
- artificial intelligence
- big data
- respiratory failure
- double blind
- locally advanced
- replacement therapy