Variety of Plant Oils: Species-Specific Lipid Biosynthesis.
Alyssa C ClewsBrandon A UlchMonika JesionowskaJun HongRobert T MullenYang XuPublished in: Plant & cell physiology (2023)
Plant oils represent a large group of neutral lipids with important applications in food, feed and oleochemical industries. Most plants accumulate oils in the form of triacylglycerol within seeds and their surrounding tissues, which is comprised of three fatty acids attached to a glycerol backbone. Different plant species accumulate unique fatty acids in their oils, serving a range of applications in pharmaceuticals and oleochemicals. To enable the production of these distinctive oils, select plant species have evolved specialized oil metabolism pathways, involving differential gene co-expression networks and structurally divergent enzymes/proteins. Here, we summarize some of the recent advances in our understanding of oil biosynthesis in plants. We compare expression patterns of oil metabolism genes from representative species, including Arabidopsis thaliana, Ricinus communis (castor bean), Linum usitatissimum L. (flax), and Elaeis guineensis (oil palm) to showcase the co-expression networks of relevant genes for acyl metabolism. We also review several divergent enzymes/proteins associated with key catalytic steps of unique oil accumulation, including fatty acid desaturases, diacylglycerol acyltransferases, and oleosins, highlighting their structural features and preference towards unique lipid substrates. Lastly, we briefly discuss protein interactomes and substrate channeling for oil biosynthesis and the complex regulation of these processes.