Cardiac perturbations after high-intensity exercise are attenuated in middle-aged compared with young endurance athletes: diminished stress or depleted stimuli?
Bryce N BalmainSurendran SabapathyAkira YamadaKenji ShiinoJonathan ChanLuke J HaselerJustin J KavanaghNorman R MorrisGlenn M StewartPublished in: American journal of physiology. Heart and circulatory physiology (2020)
Strenuous exercise elicits transient functional and biochemical cardiac imbalances. Yet, the extent to which these responses are altered owing to aging is unclear. Accordingly, echocardiograph-derived left ventricular (LV) and right ventricular (RV) global longitudinal strain (GLS) and high-sensitivity cardiac troponin I (hs-cTnI) were assessed before (pre) and after (post) a 60-min high-intensity cycling race intervention (CRIT60) in 11 young (18-30 yr) and 11 middle-aged (40-65 yr) highly trained male cyclists, matched for cardiorespiratory fitness. LV and RV GLS were measured at rest and during a semirecumbent exercise challenge performed at the same intensity (young: 93 ± 10; middle-aged: 85 ± 11 W, P = 0.60) pre- and post-CRIT60. Augmentation (change from rest-to-exercise challenge) of LV GLS (pre: -2.97 ± 0.65; post: -0.82 ± 0.48%, P = 0.02) and RV GLS (pre: -2.08 ± 1.28; post: 3.08 ± 2.02%, P = 0.01) was attenuated and completely abolished, in the young following CRIT60, while augmentation of LV GLS (pre: -3.21 ± 0.41; post: -3.99 ± 0.55%, P = 0.22) and RV GLS (pre: -3.47 ± 1.44; post: -1.26 ± 1.00%, P = 0.27) was preserved in middle-aged following CRIT60. While serum hs-cTnI concentration increased followingCRIT60 in the young (pre: 7.3 ± 1.6; post: 17.7 ± 1.6 ng/L, P < 0.01) and middle-aged (pre: 4.5 ± 0.6; post: 10.7 ± 2.0 ng/L, P < 0.01), serum hs-cTnI concentration increased to a greater extent in the young than in the middle-aged following CRIT60 (P < 0.01). These findings suggest that functional and biochemical cardiac perturbations induced by high-intensity exercise are attenuated in middle-aged relative to young individuals. Further study is warranted to determine whether acute exercise-induced cardiac perturbations alter the adaptive myocardial remodeling response.NEW & NOTEWORTHY High-intensity endurance exercise elicits acute cardiac imbalances that may be an important stimulus for adaptive cardiac remodeling. This study highlights that following a bout of high-intensity exercise that is typical of routine day-to-day cycling training, exercise-induced autonomic, biochemical, and functional cardiac imbalances are attenuated in middle-aged relative to young well-trained cyclists. These findings suggest that aging may alter exercise-induced stress stimulus response that initiates cardiac remodeling in athlete's heart.
Keyphrases
- high intensity
- middle aged
- left ventricular
- resistance training
- mycobacterium tuberculosis
- heart failure
- randomized controlled trial
- liver failure
- hypertrophic cardiomyopathy
- skeletal muscle
- soft tissue
- coronary artery disease
- cross sectional
- body composition
- clinical practice
- transcatheter aortic valve replacement
- catheter ablation