Login / Signup

Comparative Analyses of EPA-Phosphatidylcholine, EPA-Lysophosphatidylcholine, and DHA-Lysophosphatidylcholine on DHA and EPA Repletion in n-3 PUFA-Deficient Mice.

Xiao-Yu CuiShan JiangCheng-Cheng WangJin-Yue YangYing-Cai ZhaoChang-Hu XueYu-Ming WangTian-Tian Zhang
Published in: Journal of agricultural and food chemistry (2022)
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) play an important role in maintaining the physiological functions of tissues, and the beneficial effects of DHA/EPA in phospholipid forms have been widely reported. Although lysophosphatidylcholine (LPC) is considered to be the preferred form of DHA supplementation for the brain, the kinetics of DHA and EPA recovery and corresponding changes of n-6 docosapentaenoic acid (DPA) and arachidonic acid (AA) levels in different phospholipid molecules and different tissues after administration of EPA in phosphatidylcholine (PC) and LPC forms and DHA in the LPC form are not clear. Here, we measured the total fatty acids in tissues and fatty acid composition of different phospholipid molecules after gavage administration of equal molar amounts of EPA/DHA in mice with n-3 polyunsaturated fatty acid (PUFA) deficiency induced by maternal dietary deprivation of n-3 PUFA during pregnancy and lactation. The results showed that dietary supplementation with EPA-PC, EPA-LPC, and DHA-LPC exhibited different priorities for EPA or DHA accretion and supplementation efficiency curves in different tissues during the developing period. EPA-PC exhibited a more optimal efficacy in DHA and EPA repletion in serum and hepatic total fatty acids. In terms of DHA recovery in the brain, EPA-LPC and DHA-LPC showed great effects. Meanwhile, the DHA level in total fatty acids and major fractions of phospholipids (PC, PE, and PI + PS) in the heart and bone marrow with the supplementation of DHA-LPC displayed a relatively considerable increase compared with that of EPA supplementation groups. The study provides a reference for the time course of DHA or EPA recovery in phospholipid molecular species in different tissues after the supplementation of EPA-PC, EPA-LPC, and DHA-LPC.
Keyphrases
  • fatty acid
  • gene expression
  • bone marrow
  • type diabetes
  • mesenchymal stem cells
  • adipose tissue
  • multiple sclerosis
  • brain injury
  • single molecule
  • birth weight
  • functional connectivity