Modeling-Based Decision Support System for Radical Prostatectomy Versus External Beam Radiotherapy for Prostate Cancer Incorporating an In Silico Clinical Trial and a Cost-Utility Study.
Yvonka van WijkBram RamaekersBen G L VannesteIva HalilajCary J G OberijeAvishek ChatterjeeTom MarcelissenArthur JochemsHenry C WoodruffPhilippe LambinPublished in: Cancers (2021)
The aim of this study is to build a decision support system (DSS) to select radical prostatectomy (RP) or external beam radiotherapy (EBRT) for low- to intermediate-risk prostate cancer patients. We used an individual state-transition model based on predictive models for estimating tumor control and toxicity probabilities. We performed analyses on a synthetically generated dataset of 1000 patients with realistic clinical parameters, externally validated by comparison to randomized clinical trials, and set up an in silico clinical trial for elderly patients. We assessed the cost-effectiveness (CE) of the DSS for treatment selection by comparing it to randomized treatment allotment. Using the DSS, 47.8% of synthetic patients were selected for RP and 52.2% for EBRT. During validation, differences with the simulations of late toxicity and biochemical failure never exceeded 2%. The in silico trial showed that for elderly patients, toxicity has more influence on the decision than TCP, and the predicted QoL depends on the initial erectile function. The DSS is estimated to result in cost savings (EUR 323 (95% CI: EUR 213-433)) and more quality-adjusted life years (QALYs; 0.11 years, 95% CI: 0.00-0.22) than randomized treatment selection.