Identification of a Key Gene Involved in Branched-Chain Short Fatty Acids Formation in Natto by Transcriptional Analysis and Enzymatic Characterization in Bacillus subtilis.
Chenlu HongYangyang ChenLu LiShouwen ChenXuetuan WeiPublished in: Journal of agricultural and food chemistry (2017)
Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca2+, Zn2+, Ba2+, Mn2+, Cu2+, SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.
Keyphrases
- bacillus subtilis
- fatty acid
- genome wide
- genome wide identification
- escherichia coli
- copy number
- transcription factor
- gene expression
- healthcare
- public health
- hydrogen peroxide
- mental health
- poor prognosis
- emergency department
- nitric oxide
- dna methylation
- small molecule
- long non coding rna
- health information
- human health
- cystic fibrosis
- electronic health record
- staphylococcus aureus
- risk assessment
- binding protein
- heat stress
- cell free
- saccharomyces cerevisiae
- heat shock protein