Diverse transcriptional regulation and functional effects revealed by CRISPR/Cas9-directed epigenetic editing.
Miguel VizosoJacco van RheenenPublished in: Oncotarget (2021)
DNA methylation is an epigenetic process that controls DNA accessibility and serves as a transcriptomic switch when deposited at regulatory regions. The adequate functioning of this process is indispensable for tissue homeostasis and cell fate determination. Conversely, altered DNA methylation patterns result in abnormal gene transcription profiles that contribute to tumor initiation and progression. However, whether the consequence of DNA methylation on gene expression and cell fate is uniform regardless of the cell type or state could so far not been tested due to the lack of technologies to target DNA methylation in-situ. Here, we have taken advantage of CRISPR/dCas9 technology adapted for epigenetic editing through site-specific targeting of DNA methylation to characterize the transcriptional changes of the candidate gene and the functional effects on cell fate in different tumor settings. As a proof-of-concept, we were able to induce de-novo site-specific methylation of the gene promoter of IGFBP2 up to 90% with long-term and bona-fide inheritance by daughter cells. Strikingly, this modification led to opposing expression profiles of the target gene in different cancer cell models and affected the expression of mesenchymal genes CDH1, VIM1, TGFB1 and apoptotic marker BCL2. Moreover, methylation-induced changes in expression profiles was also accompanied by a phenotypic switch in cell migration and cell morphology. We conclude that in different cell types the consequence of DNA methylation on gene expression and cell fate can be completely different.
Keyphrases
- dna methylation
- cell fate
- genome wide
- gene expression
- crispr cas
- copy number
- genome editing
- single cell
- mitochondrial dna
- cell migration
- transcription factor
- genome wide identification
- cell therapy
- stem cells
- poor prognosis
- bone marrow
- cell death
- single molecule
- induced apoptosis
- oxidative stress
- long non coding rna
- drug delivery
- cancer therapy
- mesenchymal stem cells
- anti inflammatory
- cell cycle arrest