CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping.
Thomas NaertDieter TulkensTom Van NieuwenhuysenJoanna PrzybylSuzan DemuynckMatt van de RijnMushriq Al-JazraweBenjamin A AlmanPaul J CouckeKim De LeeneerChristian VanhoveSavvas N SavvidesDavid CreytensKris VleminckxPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Cancer precision medicine implies identification of tumor-specific vulnerabilities associated with defined oncogenic pathways. Desmoid tumors are soft-tissue neoplasms strictly driven by Wnt signaling network hyperactivation. Despite this clearly defined genetic etiology and the strict and unique implication of the Wnt/β-catenin pathway, no specific molecular targets for these tumors have been identified. To address this caveat, we developed fast, efficient, and penetrant genetic Xenopus tropicalis desmoid tumor models to identify and characterize drug targets. We used multiplexed CRISPR/Cas9 genome editing in these models to simultaneously target a tumor suppressor gene ( apc ) and candidate dependency genes. Our methodology CRISPR/Cas9 selection-mediated identification of dependencies (CRISPR-SID) uses calculated deviations between experimentally observed gene editing outcomes and deep-learning-predicted double-strand break repair patterns to identify genes under negative selection during tumorigenesis. This revealed EZH2 and SUZ12 , both encoding polycomb repressive complex 2 components, and the transcription factor CREB3L1 as genetic dependencies for desmoid tumors. In vivo EZH2 inhibition by Tazemetostat induced partial regression of established autochthonous tumors. In vitro models of patient desmoid tumor cells revealed a direct effect of Tazemetostat on Wnt pathway activity. CRISPR-SID represents a potent approach for in vivo mapping of tumor vulnerabilities and drug target identification.
Keyphrases
- crispr cas
- genome editing
- genome wide
- bioinformatics analysis
- transcription factor
- copy number
- dna methylation
- deep learning
- stem cells
- genome wide identification
- cell proliferation
- high resolution
- soft tissue
- long non coding rna
- case report
- emergency department
- gene expression
- drug induced
- squamous cell
- young adults
- papillary thyroid
- oxidative stress
- cell free