In vivo longitudinal imaging of RNA interference-induced endocrine therapy resistance in breast cancer.
Nrusingh C BiswalXiaoyong FuJaidip M JagtapMartin J SheaVijetha KumarTamika LordsRonita RoyRachel SchiffAmit JoshiPublished in: Journal of biophotonics (2019)
Endocrine therapy resistance in breast cancer is a major obstacle in the treatment of patients with estrogen receptor-positive (ER+) tumors. Herein, we demonstrate the feasibility of longitudinal, noninvasive and semiquantitative in vivo molecular imaging of resistance to three endocrine therapies by using an inducible fluorescence-labeled short hairpin RNA (shRNA) system in orthotopic mice xenograft tumors. We employed a dual fluorescent doxycycline (Dox)-regulated lentiviral inducer system to transfect ER+ MCF7L breast cancer cells, with green fluorescent protein (GFP) expression as a marker of transfection and red fluorescent protein (RFP) expression as a surrogate marker of Dox-induced tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) knockdown. Xenografted MCF7L tumor-bearing nude mice were randomized to therapies comprising estrogen deprivation, tamoxifen or an ER degrader (fulvestrant) and an estrogen-treated control group. Longitudinal imaging was performed by a home-built multispectral imaging system based on a cooled image intensified charge coupled device camera. The GFP signal, which corresponds to number of viable tumor cells, exhibited excellent correlation to caliper-measured tumor size (P << .05). RFP expression was substantially higher in mice exhibiting therapy resistance and strongly and significantly (P < 1e-7) correlated with the tumor size progression for the mice with shRNA-induced PTEN knockdown. PTEN loss was strongly correlated with resistance to estrogen deprivation, tamoxifen and fulvestrant therapies.
Keyphrases
- estrogen receptor
- breast cancer cells
- poor prognosis
- high fat diet induced
- high resolution
- high glucose
- diabetic rats
- binding protein
- quantum dots
- cell proliferation
- healthcare
- drug induced
- stem cells
- living cells
- pi k akt
- long non coding rna
- fluorescence imaging
- type diabetes
- cross sectional
- wild type
- photodynamic therapy
- bone marrow
- transcription factor
- clinical trial
- signaling pathway
- small molecule
- copy number
- phase iii
- phase ii
- high speed
- solar cells