Login / Signup

Pleiotropy alleviates the fitness costs associated with resource allocation trade-offs in immune signalling networks.

Reese A MartinAnn T Tate
Published in: Proceedings. Biological sciences (2024)
Many genes and signalling pathways within plant and animal taxa drive the expression of multiple organismal traits. This form of genetic pleiotropy instigates trade-offs among life-history traits if a mutation in the pleiotropic gene improves the fitness contribution of one trait at the expense of another. Whether or not pleiotropy gives rise to conflict among traits, however, likely depends on the resource costs and timing of trait deployment during organismal development. To investigate factors that could influence the evolutionary maintenance of pleiotropy in gene networks, we developed an agent-based model of co-evolution between parasites and hosts. Hosts comprise signalling networks that must faithfully complete a developmental programme while also defending against parasites, and trait signalling networks could be independent or share a pleiotropic component as they evolved to improve host fitness. We found that hosts with independent developmental and immune networks were significantly more fit than hosts with pleiotropic networks when traits were deployed asynchronously during development. When host genotypes directly competed against each other, however, pleiotropic hosts were victorious regardless of trait synchrony because the pleiotropic networks were more robust to parasite manipulation, potentially explaining the abundance of pleiotropy in immune systems despite its contribution to life history trade-offs.
Keyphrases