Login / Signup

Use of Different Nutrients to Improve the Fermentation Performances of Lactiplantibacillus pentosus OM13 during the Production of Sevillian Style Green Table Olives.

Antonio AlfonzoVincenzo NaselliRaimondo GaglioLuca SettanniOnofrio CoronaFrancesco La CrocePaola VagnoliSibylle Krieger-WeberNicola FrancescaGiancarlo Moschetti
Published in: Microorganisms (2023)
The aim of this study was to evaluate the fermentation performance of the commercial starter Lactiplantibacillus pentosus OM13 with four nutrients (A, B, C, and D) that differed in the following ingredients: starch, sugars, maltodextrin, inactivated yeast, inactivated yeast rich in amino acids, inactivated yeast rich in mannoproteins, and salt (NaCl). For this purpose, six different experimental productions of Nocellara del Belice table olives were carried out. During transformation, the fermentation process was monitored by measuring pH and plate counts for lactic acid bacteria (LAB), yeasts, Enterobacteriaceae, Staphylococcaceae, and Pseudodomondaceae populations. At the end of the production process, each trial was subjected to volatile organic compound analysis and sensory evaluation. The addition of the different nutrients resulted in a significant reduction in pH (around 2.5 points) after 3 days of fermentation. At the same time, a significant increase in the number of LAB populations (> 6.6 log CFU/mL) was observed for all trials. Volatile organic compound (VOC) analysis revealed the presence of 39 compounds. In this study, nutrient C was optimal for improving the fermentation activity of L. pentosus OM13. These results provide elements for the implementation of experimental protocols to reduce product losses and improve sensory characteristics.
Keyphrases
  • lactic acid
  • saccharomyces cerevisiae
  • heavy metals
  • healthcare
  • primary care
  • pseudomonas aeruginosa
  • risk assessment
  • study protocol
  • escherichia coli
  • mass spectrometry
  • gas chromatography
  • double blind