According to the global cancer statistic, lung cancer is one of the most dangerous tumors, which poses a serious threat to human health. Exploration the mechanism of lung cancer and new targeted therapeutic measures is always the hot topic. Long noncoding RNA (lncRNA) is an important factor affecting the development of tumors. However, the research on the mechanism of lncRNA in the progress of lung cancer needs to be further expanded. In this study, we found that the expression of lncRNA GMDS-AS1 was significantly reduced in lung adenocarcinoma (LUAD) tissues and cells. Upregulated GMDS-AS1 can significantly inhibit the proliferation of LUAD cells and promote cell apoptosis in vitro and in vivo. The results indicate that GMDS-AS1 acts as a tumor suppressor gene to affect the development of LUAD. Further studies revealed that GMDS-AS1 is a target gene of miR-96-5p, and GMDS-AS1 regulates proliferation and apoptosis of LUAD cells in association with miR-96-5p. In addition, we also confirmed that CYLD lysine 63 deubiquitinase (CYLD) is also a target gene of miR-96-5p. Through various validations, we confirmed that GMDS-AS1 can act as a ceRNA to upregulate the expression of CYLD by sponging miR-96-5p. Moreover, the intervention of GMDS-AS1/miR-96-5p/CYLD network can regulate the proliferation and apoptosis of LUAD cells. In this study, we revealed that the GMDS-AS1/miR-96-5p/CYLD network based on ceRNA mechanism plays an important role in the development of LUAD and provides a new direction and theoretical basis for targeted therapy of LUAD.
Keyphrases
- cell cycle arrest
- induced apoptosis
- long noncoding rna
- long non coding rna
- endoplasmic reticulum stress
- cell death
- signaling pathway
- poor prognosis
- oxidative stress
- human health
- pi k akt
- randomized controlled trial
- risk assessment
- gene expression
- copy number
- single cell
- climate change
- young adults
- dna methylation
- cancer therapy
- squamous cell