A Knitted and MXenzyme-Integrated Dressing for Geriatrics Diagnosis and Ulcer Healing.
Jun SongZhongda ChenLanhao ShiTong YangYu LuShancheng YuHuijing XiangJia-Shen LiYi LiPibo MaBenhui HuYu ChenPublished in: ACS nano (2024)
Integrated diagnostic and therapeutic dressings are desirable to relieve diabetic patients who often suffer from diabetic foot ulcers (DFUs) and peripheral vascular diseases (PVDs). However, it is highly difficult to monitor the pulse waves with fidelity under wet environments and connect the waveforms to diseases through a small strain sensor. Additionally, immobilizing MXenzyme to regulate spatially heterogeneous levels of reactive oxygen species (ROS) and applying active intervention to enhance ulcer healing on a single structure remain a complex task. To address these issues, we designed a multiscale wearable dressing comprising a knitted all-textile sensing array for quantitatively investigating the pulse wave toward PVD diagnosis. MXenzyme was loaded onto the dressing to provide multiple enzyme mimics for anti-inflammatory activities and deliver electrical stimulation to promote wound growth. In mice, we demonstrate that high and uniform expression of the vascular endothelial growth factor (VEGF) is observed only in the group undergoing dual mediation with electrical stimulation and MXenzyme. This observation indicates that the engineered wound dressing has the capability to accelerate healing in DFU. In human patient evaluations, the engineered dressing distinguishes vascular compliance and pulse period, enabling the diagnosis of arteriosclerosis and return blockage, two typical PVDs. The designed and engineered multiscale dressing achieves the purpose of integrating diagnostic peripheral vessel health monitoring and ulcer healing therapeutics for satisfying the practical clinical requirements of geriatric patients.
Keyphrases
- wound healing
- vascular endothelial growth factor
- reactive oxygen species
- endothelial cells
- blood pressure
- spinal cord injury
- healthcare
- newly diagnosed
- end stage renal disease
- anti inflammatory
- poor prognosis
- public health
- randomized controlled trial
- mental health
- prognostic factors
- ejection fraction
- drug delivery
- heart rate
- small molecule
- dna damage
- high resolution
- induced pluripotent stem cells
- binding protein
- risk assessment
- chemotherapy induced