Login / Signup

Evaluation of Low-Cost Smartphone-Based Infrared Cameras to Assess the Cooling and Refrigerated Storage Temperatures of Fresh Produce.

Boran YangGovindaraj Dev KumarKevin E Mis-Solval
Published in: Foods (Basel, Switzerland) (2022)
Populations of pathogens may increase in fresh produce when subjected to temperature abuse. Smartphone-based infrared (SBIR) cameras are potential alternatives for temperature measurements of fresh produce during postharvest handling and storage. This study compared the performance of SBIR cameras (FLIR and Seek) against conventional temperature acquisition devices for evaluating fresh produce's simulated hydrocooling and storage conditions. First, thermal images of fresh produce were obtained with SBIR cameras and handheld thermal imagers at ~35 °C, ~20 °C, and ~4 °C to simulate outdoor, packinghouse, and refrigerated environments, respectively. Next, fresh produce was incubated at ~42 °C for 20 h and immersed in chilled water for a hydrocooling simulation. Then, boxes containing cooled fresh produce were stored in a walk-in cooler at different heights for three days. FLIR SBIR cameras were more effective at capturing thermal images of fresh produce than Seek SBIR cameras in all evaluated conditions. More importantly, SBIR cameras accurately acquired temperature profiles of fresh produce during simulated hydrocooling and cold storage. Additionally, the accuracy and quality of thermal images obtained with FLIR cameras were better than those obtained with Seek cameras. The study demonstrated that SBIR cameras are practical, easy-to-use, and cost-effective devices to monitor fresh produce's temperature during postharvest handling and storage.
Keyphrases
  • deep learning
  • low cost
  • convolutional neural network
  • optical coherence tomography
  • particulate matter
  • room temperature