Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.
Keyphrases
- traumatic brain injury
- cerebral ischemia
- brain injury
- severe traumatic brain injury
- lipopolysaccharide induced
- subarachnoid hemorrhage
- lps induced
- randomized controlled trial
- mild traumatic brain injury
- inflammatory response
- cognitive impairment
- blood brain barrier
- advanced non small cell lung cancer
- high fat diet induced
- zika virus
- type diabetes
- end stage renal disease
- metabolic syndrome
- machine learning
- dengue virus
- functional connectivity
- spinal cord injury
- prognostic factors
- spinal cord
- wild type