Association of Slowly Digestible Starch Intake with Reduction of Postprandial Glycemic Response: An Update Meta-Analysis.
Yanli WangXiao ZhouXuesong XiangMing MiaoPublished in: Foods (Basel, Switzerland) (2022)
Slowly digestible starch (SDS) has been shown to digest slowly throughout the entire small intestine, generating slow and prolonged release of glucose, according to the in vitro Englyst assay. The aim of this work was to conduct a meta-analysis of up-to-date evidence to evaluate the association between SDS consumption and a reduction in the postprandial glycemic response, including extended glycemic index (EGI) or glycemic profile (GP) parameters, during in vivo digestion. We searched the Web of Science, PubMed, Europe PMC, Cochrane Library, and Embase to identify related articles published up to September 2022. Human trials investigating the effect of the SDS amount on the postprandial glucose profile were estimated at the standard mean difference (SMD), with a 95% confidence interval (CI), using random effect models. The review followed the systematic reviews and meta-analyses (PRISMA) guidelines. The meta-analysis included a total of 65 participants. The results revealed that the EGI experienced a greater increase (SMD = 24.61, I2 = 79.2%, p < 0.01) after SDS intake, while the GP exhibited similar trends (SMD = 29.18, I2 = 73.3%, p < 0.01). High heterogeneity vanished in the subgroup and sensitivity analysis (EGI: I2 = 14.6%, p = 0.31; GP: I2 = 0.0%, p = 0.97). There was no evidence of publication bias for EGI (p = 0.41) or GP (p = 0.99).The present meta-analysis provides evidence that SDS intake is positively correlated with EGI and GP levels. The quantitative relationship of the reduction in the postprandial glycemic response and SDS consumption was used to quantify the slow digestion property on an extended time scale, and supplement the in vitro concept of SDS.
Keyphrases
- meta analyses
- systematic review
- blood glucose
- type diabetes
- glycemic control
- randomized controlled trial
- endothelial cells
- public health
- weight gain
- high throughput
- skeletal muscle
- single cell
- clinical trial
- physical activity
- metabolic syndrome
- clinical practice
- weight loss
- mass spectrometry
- anaerobic digestion
- insulin resistance
- study protocol