Login / Signup

Synthesis of Steryl Hydroxycinnamates to Enhance Antioxidant Activity of Rapeseed Oil and Emulsions.

Dobrochna Rabiej-KoziołMarek P KrzemińskiAleksandra Szydłowska-Czerniak
Published in: Materials (Basel, Switzerland) (2020)
In recent years, steryl esters have found potential applications in food, pharmaceutical and cosmetic industries. Therefore, three hydroxycinnamate steryl esters (HSEs): β-sitosteryl sinapate (β-SSA), β-sitosteryl caffeate (β-SCA), and β-sitosteryl ferulate (β-SFA) were synthesized by chemical approach and their antioxidant activity (AA) were analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. The values of inhibitory concentration (IC50) of each ester needed to inhibit 50% of the DPPH radical (IC50(DPPH) = 238.9, 78.3, 290.0 µmol/L for β-SSA, β-SCA, and β-SFA, respectively) and ABTS radical cation (IC50(ABTS) = 174.6, 106.7, 206.0 µmol/L for β-SSA, β-SCA, and β-SFA, respectively) were estimated and compared with antioxidant potential of phenolic acids. Moreover, the effect of HSEs addition in the concentrations range between 0.01% and 0.5% on the AA of refined rapeseed oil, mayonnaise and margarine was evaluated. Chemical structures of the synthesized HSEs and their concentrations strongly affect the AA of fat products. Oil and emulsions supplemented with higher concentrations of HSEs had significantly higher AA than control samples. Unfortunately, lower concentrations of HSEs (0.01% and 0.02%) did not increase the AA of fat products. However, steryl phenolates added in higher amounts can be considered as potential antioxidants delaying the oxidation processes of studied fats.
Keyphrases
  • fatty acid
  • human health
  • adipose tissue
  • high resolution
  • risk assessment
  • anti inflammatory
  • climate change