Login / Signup

Generating Point Cloud from Measurements and Shapes Based on Convolutional Neural Network: An Application for Building 3D Human Model.

Mau Tung NguyenThanh Vu DangMinh Kieu Tran ThiPham The Bao
Published in: Computational intelligence and neuroscience (2019)
It has been widely known that 3D shape models are comprehensively parameterized using point cloud and meshes. The point cloud particularly is much simpler to handle compared with meshes, and it also contains the shape information of a 3D model. In this paper, we would like to introduce our new method to generating the 3D point cloud from a set of crucial measurements and shapes of importance positions. In order to find the correspondence between shapes and measurements, we introduced a method of representing 3D data called slice structure. A Neural Networks-based hierarchical learning model is presented to be compatible with the data representation. Primary slices are generated by matching the measurements set before the whole point cloud tuned by Convolutional Neural Network. We conducted the experiment on a 3D human dataset which contains 1706 examples. Our results demonstrate the effectiveness of the proposed framework with the average error 7.72% and fine visualization. This study indicates that paying more attention to local features is worthwhile when dealing with 3D shapes.
Keyphrases
  • convolutional neural network
  • deep learning
  • endothelial cells
  • neural network
  • randomized controlled trial
  • electronic health record
  • systematic review
  • induced pluripotent stem cells
  • big data
  • pluripotent stem cells