Login / Signup

Phosphoproteomics identifies microglial Siglec-F inflammatory response during neurodegeneration.

Nader MorshedWilliam T RalveniusAlexi NottL Ashley WatsonFelicia H RodriguezLeyla Anne AkayBrian A JoughinPing-Chieh PaoJay PenneyLauren LaRocqueDiego MastroeniLi-Huei TsaiForest M White
Published in: Molecular systems biology (2021)
Alzheimer's disease (AD) is characterized by the appearance of amyloid-β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK-p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec-F which was upregulated on a subset of reactive microglia. The human paralog Siglec-8 was also upregulated on microglia in AD. Siglec-F and Siglec-8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV-2 cell line and human stem cell-derived microglia models. Siglec-F overexpression activates an endocytic and pyroptotic inflammatory response in BV-2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV-2 cells. Collectively, our results point to an important role for mouse Siglec-F and human Siglec-8 in regulating microglial activation during neurodegeneration.
Keyphrases