Login / Signup

A Vitamin E-Enriched Antioxidant Diet Interferes with the Acute Adaptation of the Liver to Physical Exercise in Mice.

Miriam HoeneMartin IrmlerJohannes BeckersMartin Hrabě de AngelisHans-Ulrich HäringCora Weigert
Published in: Nutrients (2018)
Physical exercise is beneficial for general health and is an effective treatment for metabolic disorders. Vitamin E is widely used as dietary supplement and is considered to improve non-alcoholic fatty liver disease by reducing inflammation and dyslipidemia. However, increased vitamin E intake may interfere with adaptation to exercise training. Here, we explored how vitamin E alters the acute exercise response of the liver, an organ that plays an essential metabolic role during physical activity. Mice fed a control or an α-tocopherol-enriched diet were subjected to a non-exhaustive treadmill run. We assessed the acute transcriptional response of the liver as well as glucocorticoid signalling and plasma free fatty acids (FFA) and performed indirect calorimetry. Vitamin E interfered with the exercise-induced increase in FFA and upregulation of hepatic metabolic regulators, and it shifted the transcriptional profile of exercised mice towards lipid and cholesterol synthesis while reducing inflammation. Energy utilization, as well as corticosterone levels and signalling were similar, arguing against acute differences in substrate oxidation or glucocorticoid action. Our results show that high-dose vitamin E alters the metabolic and inflammatory response of the liver to physical exercise. The interference with these processes may suggest a cautious use of vitamin E as dietary supplement.
Keyphrases