Amorfrutin B Protects Mouse Brain Neurons from Hypoxia/Ischemia by Inhibiting Apoptosis and Autophagy Processes Through Gene Methylation- and miRNA-Dependent Regulation.
Karolina PrzepiórskaAgnieszka WnukCordian BeyerMałgorzata KajtaPublished in: Molecular neurobiology (2022)
Amorfrutin B is a selective modulator of the PPARγ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis in terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia, except for the expression of anti-apoptotic BCL2, which was increased. After post-treatment with amorfrutin B, the methylation rate of the pro-apoptotic Bax gene was inversely correlated with the protein level, which explained the decrease in the BAX/BCL2 ratio as a result of Bax hypermethylation. The mechanisms of the protective action of amorfrutin B also involved the inhibition of autophagy, as evidenced by diminished autophagolysosome formation and the loss of neuroprotective properties of amorfrutin B after the silencing of Becn1 and/or Atg7. Although post-treatment with amorfrutin B reduced the expression levels of Becn1, Nup62, and Ambra1 during hypoxia, it stimulated Atg5 and the protein levels of MAP1LC3B and AMBRA1 during ischemia, supporting the ambiguous role of autophagy in the development of brain pathologies. Furthermore, amorfrutin B affected the expression levels of apoptosis-focused and autophagy-related miRNAs, and many of these miRNAs were oppositely regulated by amorfrutin B and hypoxia/ischemia. The results strongly support the position of amorfrutin B among the most promising anti-stroke and wide-window therapeutics.
Keyphrases
- cell death
- endoplasmic reticulum stress
- oxidative stress
- poor prognosis
- induced apoptosis
- cell cycle arrest
- binding protein
- cerebral ischemia
- genome wide
- endothelial cells
- signaling pathway
- diabetic rats
- spinal cord
- dna methylation
- anti inflammatory
- long non coding rna
- gene expression
- multiple sclerosis
- ischemia reperfusion injury
- climate change
- white matter
- combination therapy
- copy number
- insulin resistance
- cell proliferation
- skeletal muscle
- metabolic syndrome
- fatty acid
- amino acid
- spinal cord injury
- resting state
- smoking cessation