Delayed effects of transcriptional responses in Mycobacterium tuberculosis exposed to nitric oxide suggest other mechanisms involved in survival.
Teresa CortesOlga T SchubertAmir Banaei-EsfahaniBen C CollinsRuedi AebersoldDouglas B YoungPublished in: Scientific reports (2017)
Mycobacterium tuberculosis has succeeded as a human pathogen for tens of thousands of years thanks to its ability to resist and adapt to the adverse conditions it encounters upon infection. Bacterial adaptation to stress is commonly viewed in the context of transcriptional regulation, with the implicit expectation that an initial transcriptomic response is tightly coupled to an ensuing proteomic response. However, after challenging M. tuberculosis with nitric oxide we found that the rapid transcriptional responses, detectable within minutes of nitric oxide exposure, typically took several hours to manifest on the protein level. Furthermore, early proteomic responses were dominated by the degradation of a set of proteins, specifically those containing damaged iron-sulphur clusters. Overall, our findings are consistent with transcriptional responses participating mostly in late-stage recovery rather than in generating an immediate resistance to nitric oxide stress, suggesting that survival of M. tuberculosis under acute stress is contingent on mechanisms other than transcriptional regulation. These findings provide a revised molecular understanding of an important human pathogen.
Keyphrases
- nitric oxide
- mycobacterium tuberculosis
- nitric oxide synthase
- endothelial cells
- pulmonary tuberculosis
- hydrogen peroxide
- gene expression
- transcription factor
- candida albicans
- stress induced
- pluripotent stem cells
- single cell
- label free
- hepatitis c virus
- acute respiratory distress syndrome
- electronic health record
- small molecule
- psychometric properties