Login / Signup

LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control.

Wenjian GanXiaoming DaiXiangpeng DaiJun XieShasha YinJunjie ZhuChen WangYuchen LiuJianping GuoMin WangJing LiuJia HuRyan J QuintonNeil J GanemPengda LiuJohn M AsaraPier Paolo PandolfiYingzi YangZhigang HeGuangping GaoWenyi Wei
Published in: Nature cell biology (2020)
The Hippo and mammalian target of rapamycin complex 1 (mTORC1) pathways are the two predominant growth-control pathways that dictate proper organ development. We therefore explored potential crosstalk between these two functionally relevant pathways to coordinate their growth-control functions. We found that the LATS1 and LATS2 kinases, the core components of the Hippo pathway, phosphorylate S606 of Raptor, an essential component of mTORC1, to attenuate mTORC1 activation by impairing the interaction of Raptor with Rheb. The phosphomimetic Raptor-S606D knock-in mutant led to a reduction in cell size and proliferation. Compared with Raptor+/+ mice, RaptorD/D knock-in mice exhibited smaller livers and hearts, and a significant inhibition of elevation in mTORC1 signalling induced by Nf2 or Lats1 and Lats2 loss. Thus, our study reveals a direct link between the Hippo and mTORC1 pathways to fine-tune organ growth.
Keyphrases
  • signaling pathway
  • wild type
  • immune response
  • oxidative stress
  • mesenchymal stem cells
  • cell therapy
  • high fat diet induced
  • type diabetes
  • risk assessment
  • cell proliferation
  • skeletal muscle
  • bone marrow