Login / Signup

Keratinocyte-derived IL-36γ plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes.

Jeong Joo PyoSungjin AhnSun Hee JinSeungchan AnEunyoung LeeJungmin ChoiJeayoung C ShinHyunjung ChoiHyoung-June KimDalwoong ChoiMinsoo Noh
Published in: Archives of toxicology (2019)
Chemical leukoderma is an acquired type of vitiligo that can be initiated by various exogenous chemicals such as hydroquinone (HQ), rhododendrol (RD), or 4-tertiary butyl phenol (4-TBP). Despite the importance of epidermal keratinocytes in diverse dermatological conditions, their toxicological role in chemical leukoderma is poorly understood. To elucidate their role in the pathogenesis of chemical leukoderma, genome-scale transcriptional analysis was performed in human epidermal keratinocytes (HEKs) treated with a sub-cytotoxic HQ concentration (10 µM). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based functional enrichment analysis of HQ-induced differentially expressed genes (DEGs) revealed that HQ significantly upregulated DEGs related to the IL-17 signaling pathway and significantly downregulated DEGs associated with melanogenesis in HEKs. The meta-analysis between the HQ-induced and cytokine-induced transcriptional data (GSE53751) showed that 58 DEGs were commonly upregulated between HQ- and IL-17A-treated HEKs. Notably, the expression of IL36G was significantly increased in HEKs in response to both HQ and IL-17A. IL-36γ (2 µg/ml) directly inhibits melanin biosynthesis in cultured human epidermal melanocytes (HEMs) and downregulates the gene transcription of key enzymes in the melanogenesis pathway including TYR, DCT, and TYRP1. Moreover, IL-36γ autocrinally regulated keratinocyte function to produce the proinflammatory cytokines IL-36γ, IL-6, and CXCL8/IL-8 in a concentration-dependent manner, suggesting that IL-36γ may stimulate the amplification cycle of cutaneous inflammation. In this regard, hydroquinone-induced IL-36γ from human keratinocytes plays a pivotal role in the development of chemical leukoderma by autocrinally or paracrinally modulating the crosstalk between keratinocytes and melanocytes.
Keyphrases