Login / Signup

Integrating Multiplexed Imaging and Multiscale Modeling Identifies Tumor Phenotype Transformation as a Critical Component of Therapeutic T Cell Efficacy.

John W HickeyEran AgmonNina HorowitzMatthew LamoreJohn SunwooMarkus W CovertGarry P Nolan
Published in: bioRxiv : the preprint server for biology (2023)
Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here we integrated CODEX multiplexed tissue imaging with multiscale modeling software, to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface.
Keyphrases
  • papillary thyroid
  • squamous cell
  • high resolution
  • healthcare
  • primary care
  • childhood cancer
  • genome wide
  • oxidative stress
  • dna methylation
  • young adults
  • photodynamic therapy