VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains.
Jaime SoSarah SudlowAbeer SayeedTanner GruddaStijn DeborggraeveDieudonné Mumba NgoyiDidier Kashiama DesamberBill WicksteadVeerle LejonMonica R MugnierPublished in: mBio (2022)
Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.
Keyphrases
- endothelial cells
- gene expression
- poor prognosis
- induced pluripotent stem cells
- single cell
- pluripotent stem cells
- dendritic cells
- adipose tissue
- type diabetes
- dna methylation
- ejection fraction
- small molecule
- high throughput
- rna seq
- machine learning
- binding protein
- skeletal muscle
- plasmodium falciparum
- klebsiella pneumoniae
- deep learning
- artificial intelligence