Login / Signup

Genetic variation in the human olfactory receptor OR5AN1 associates with the perception of musks.

Narumi Sato-AkuharaCasey TrimmerAndreas KellerYoshihito NiimuraMika ShirasuJoel D MainlandKazushige Touhara
Published in: Chemical senses (2023)
Humans have significant individual variations in odor perception, derived from their experience or sometimes from differences in the olfactory receptor (OR) gene repertoire. In several cases, the genetic variation of a single OR affects the perception of its cognate odor ligand. Musks are widely used for fragrance and are known to demonstrate specific anosmia. It, however, remains to be elucidated whether the OR polymorphism contributes to individual variations in musk odor perception. Previous studies reported that responses of the human musk receptor OR5AN1 to a variety of musks in vitro correlated well with perceptual sensitivity to those odors in humans and that the mouse ortholog, Olfr1440 (MOR215-1), plays a critical role in muscone perception. Here, we took advantage of genetic variation in OR5AN1 to examine how changes in receptor sensitivity are associated with human musk perception. We investigated the functional differences between OR5AN1 variants in an in vitro assay and measured both perceived intensity and detection threshold in human subjects with different OR5AN1 genotypes. Human subjects homozygous for the more sensitive L289F allele had a lower detection threshold for muscone and found macrocyclic musks to be more intense than subjects homozygous for the reference allele. These results demonstrate that the genetic variation in OR5AN1 contributes to perceptual differences for some musks. In addition, we found that the more functional variant of OR5A1, a receptor involved in β-ionone perception, is associated with the less functional variant of OR5AN1, suggesting that the perceived intensities of macrocyclic musks and β-ionone are inversely correlated.
Keyphrases