Multi-substrate metabolic tracing reveals marked heterogeneity and dependency on fatty acid metabolism in human prostate cancer.
Gio FidelitoDavid P de SouzaBirunthi NiranjanWilliam de NardoShivakumar KeerthikumarKristin K BrownRenea A TaylorMatthew J WattPublished in: Molecular cancer research : MCR (2022)
Cancer cells undergo metabolic reprogramming to meet increased bioenergetic demands. Studies in cells and mice have highlighted the importance of oxidative metabolism and lipogenesis in prostate cancer, however, the metabolic landscape of human prostate cancer remains unclear. To address this knowledge gap, we performed radiometric (14C) and stable (13C) isotope tracing assays in precision-cut slices of patient-derived xenografts (PDXs). Glucose, glutamine, and fatty acid oxidation was variably upregulated in malignant PDXs compared to benign PDXs. De novo lipogenesis (DNL) and storage of free fatty acids into phospholipids and triacylglycerols were increased in malignant PDXs. There was no difference in substrate utilization between localized and metastatic PDXs and hierarchical clustering revealed marked metabolic heterogeneity across all PDXs. Mechanistically, glucose utilization was mediated by acetyl-CoA production rather than carboxylation of pyruvate, while glutamine entered the TCA cycle through transaminase reactions before being utilized via oxidative or reductive pathways. Blocking fatty acid uptake or fatty acid oxidation with pharmacological inhibitors was sufficient to reduce cell viability in PDX-derived organoids (PDXOs), whereas blockade of DNL, or glucose or glutamine oxidation induced variable and limited therapeutic efficacy. These findings demonstrate that human prostate cancer, irrespective of disease stage, can effectively utilize all metabolic substrates, albeit with marked heterogeneity across tumors. We also confirm that fatty acid uptake and oxidation are targetable metabolic dependencies in human prostate cancer. Implications: Prostate cancer utilizes multiple substrates to fuel energy requirements, yet pharmacological targeting of fatty acid uptake and oxidation reveals metabolic dependencies in localised and metastatic tumors.
Keyphrases
- fatty acid
- prostate cancer
- radical prostatectomy
- endothelial cells
- single cell
- induced pluripotent stem cells
- hydrogen peroxide
- small cell lung cancer
- squamous cell carcinoma
- pluripotent stem cells
- healthcare
- high glucose
- induced apoptosis
- blood glucose
- mass spectrometry
- nitric oxide
- rna seq
- drug delivery
- skeletal muscle
- insulin resistance
- cell proliferation
- blood pressure
- visible light
- endoplasmic reticulum stress
- diabetic rats