Login / Signup

Starch/ionic liquid/hydrophobic association hydrogel with high stretchability, fatigue resistance, self-recovery and conductivity for sensitive wireless wearable sensors.

Jingmin ShenLu LuRongtong HeQichao YeChao YuanLi GuoMeng ZhaoBo Cui
Published in: Carbohydrate polymers (2024)
Conductive hydrogels have been widely used in wearable electronics due to their flexible, conductive and adjustable properties. With ever-growing demand for sustainable and biocompatible sensing materials, biopolymer-based hydrogels have drawn significant attention. Among them, starch-based hydrogels have a great potential for wearable electronics. However, it remains challenging to develop multifunctional starch-based hydrogels with high stretchability, good conductivity, excellent durability and high sensitivity. Herein, amylopectin and ionic liquid were introduced into a hydrophobic association hydrogel to endow it with versatility. Benefiting from the synergistic effect of amylopectin and ionic liquid, the hydrogel exhibited excellent mechanical properties (the elongation of 2540 % with a Young's modulus of 12.0 kPa and a toughness of 1.3 MJ·m -3 ), self-recovery, good electrical properties (a conductivity of 1.8 S·m -1 and electrical self-healing), high sensitivity (gauge factor up to 26.85) and excellent durability (5850 cycles). The above properties of the hydrogel were closely correlated to its internal structure from hydrophobic association, H-bonding and electrostatic interaction, and can be regulated by changing the component contents. A wireless wearable sensor based on the hydrogel realized accurate and stable monitoring of joint motions and expression changes. This work demonstrates a kind of promising biopolymer-based materials as candidates for high-performance flexible wearable sensors.
Keyphrases