Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells.
S GheenaEzhilarasan DevarajPublished in: Human & experimental toxicology (2019)
Hepatocellular carcinoma is the second most common cause of cancer death in the world and its incidence has dramatically increased worldwide in the past two decades. Syringic acid (SA) has been studied for its hepatoprotective, anti-inflammatory, immunomodulatory, free radical scavenging, and antioxidant activities. We aimed to evaluate the cytotoxic effect of SA against human hepatoma HepG2 cell line. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. HepG2 cells were treated with SA at concentration ranges of 25, 50, and 100 µM for 24 h. Reactive oxygen species (ROS) expression was investigated by dichlorofluorescein staining assay. Morphological changes of SA-treated HepG2 cells were evaluated by acridine orange (AO) and ethidium bromide (EB) dual staining. Apoptotic marker gene expressions were evaluated by qPCR. SA treatment caused significant cytotoxicity and liberation of ROS in HepG2 cells. AO and EB staining showed membrane blebbing and distortion in SA-treated cells. Apoptotic markers such as caspases 3 and 9, cytochrome c, Apaf-1, Bax, and p53 gene expressions were significantly increased upon SA treatment indicating the possibility of apoptosis induction in HepG2 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. SA has a cytotoxic effect on human HepG2 cell line, and this might be a promising agent in anticancer research.
Keyphrases
- reactive oxygen species
- cell death
- anti inflammatory
- gene expression
- endothelial cells
- oxidative stress
- induced apoptosis
- high throughput
- squamous cell carcinoma
- poor prognosis
- dna methylation
- risk factors
- cell proliferation
- combination therapy
- copy number
- young adults
- newly diagnosed
- transcription factor
- binding protein
- induced pluripotent stem cells
- pluripotent stem cells
- smoking cessation