Login / Signup

Occurrence of wooden breast and white striping in Brazilian slaughtering plants and use of near-infrared spectroscopy and multivariate analysis to identify affected chicken breasts.

Leila Moreira de CarvalhoMarta Suely MadrugaMarta Suely MadrugaAmanda Teixeira BadaróDouglas Fernandes Barbin
Published in: Journal of food science (2020)
White Striping (WS) and Wooden Breast (WB) are emerging poultry myopathies that occur worldwide, affecting the quality of meat. The aim of this study was to evaluate the occurrence of N, WS, WB, and WS/WB (myopathies combined) in chicken breast from Brazilian commercial plant, comparing (1) inspection based on visual aspect and palpation of Pectoralis major muscle, and (2) identification of these myopathies by near-infrared Spectroscopy (NIRS). Chickens slaughtered at Brazilian commercial plant at four age ranges (4 to 5, 6 to 7, 8 to 9, and 65 weeks) were inspected. Spectral information was acquired using a portable NIR spectrometer, and classification models were performed using and Successive Projection Algorithm-Linear Discriminant Analysis (SPA-LDA) and Soft Independent Modeling of Class Analogy (SIMCA) to distinguish normal and affected muscles. Results showed that occurrence of myopathies was aggravated by age of slaughter, as chicken slaughtered at 4 to 5 and 65 weeks exhibited 13.6 and 95% of myopathies, respectively. Birds slaughtered at 65 weeks showed no occurrence of WB, isolated or combined with WS. It was not possible to differentiate the WB and WS/WB classes; therefore, those samples were grouped (WB+WS/WB). SPA-LDA model showed greater accuracy (92 to 93%) in identifying Normal (N), WS, and WB+WS/WB groups, compared to SIMCA (89 to 91%). It can be concluded that the level of occurrence of myopathies in meat is directly related to the age of slaughter. This study demonstrated that NIRS combined with SPA-LDA model could be used as a tool to detect myopathies in chicken breast. This technique has potential for application in industrial processing lines as an alternative to the traditional methods of identification. PRACTICAL APPLICATION: This study shows that NIRS combined with chemometric techniques can be used to identify chicken breast myopathies in a wide range of ages at slaughter. In addition to being able to discriminate chicken muscles into subclasses, namely, Normal, WS, and WB/WB+WS, this technique has potential for application in industrial processing lines as it is a portable and nondestructive method. This procedure is emphasized as an alternative to the conventional method of identification based on palpation and visual assessment of muscle.
Keyphrases
  • risk assessment
  • machine learning
  • skeletal muscle
  • deep learning
  • human health
  • healthcare
  • quality improvement
  • drug delivery
  • fluorescent probe
  • neural network