Anti-cancerous effect of corn silk: a critical review on its mechanism of action and safety evaluation.
Amisha GulatiJyoti SinghPrasad RasaneSawinder KaurJaspreet KaurVikas NandaPublished in: 3 Biotech (2023)
Cancer is a broad collection of diseases that can begin in almost any organ or tissue of the body. Corn silk is the hair-like stigmata of female maize flowers which is generally discarded as waste from maize cultivation. The current study targets the anti-cancer potential of corn silk and its bioactive compounds namely, polyphenols, flavonoids, and sterols. The polyphenols and flavonoids like quercetin, rutin, apigenin and beta-sitosterol are a range of compounds from corn silk which were investigated for their anticancer effect. Corn silk showed apoptotic and antiproliferative effects in cancer cells through different signalling pathways, essentially the serine/threonine kinases (Akt)/lipid kinases (PI3Ks) pathway. The study revealed that corn silk compounds target immune cell responses, induce cell cytotoxicity, and upregulate the expression of proapoptotic genes p53, p21, caspase 9, and caspase 3 in certain cancer cell lines including HeLa cervical cancer cells, MCF-7 breast cancer cells, PANC-02 pancreatic cancer cells and Caco-2 colon cancer cells. Flavonoids derived from corn silk enhance T cell mediated immune response and decrease inflammatory factors. Corn silk bioactive compounds were found to reduce the side effects of cancer therapy. Antioxidants of corn silk, quercetin and rutin help in reducing the nephrotoxicity of chemotherapeutic drugs. The study also suggests that corn silk has anti-cancerous potential as it targets tumour suppression and inhibits metastasis A dose of 500 mg/kg body weight of corn silk has been found safe for human consumption. Corn silk extract can be used as a preventive or therapeutic step to cure cancer. The anti-cancer property, mechanism and role of corn silk in controlling cancer-related side effects have been critically reviewed providing new scope for the use of corn silk in cancer therapy.
Keyphrases
- tissue engineering
- wound healing
- immune response
- cell death
- cancer therapy
- breast cancer cells
- poor prognosis
- squamous cell carcinoma
- papillary thyroid
- inflammatory response
- oxidative stress
- endothelial cells
- gene expression
- single cell
- body weight
- signaling pathway
- stem cells
- drug delivery
- binding protein
- atomic force microscopy
- dna methylation
- squamous cell
- single molecule
- cell therapy