The article explores the multifaceted role of the neuropeptide oxytocin in human behavior and its connection to the oxytocin receptor ( OXTR ) gene. Oxytocin, produced in specific brain nuclei, is implicated in emotional, social, and maternal behaviors, stress reduction, uterine contraction during childbirth, and lactation. The OXTR gene, located on chromosome 3, encodes oxytocin receptors found in various body parts, including critical brain regions associated with social behaviors. The article delves into studies on rodents, revealing correlations between OXTR gene expression and pair bonding in the prefrontal cortex and social behavior regulation in the amygdala. The discussion extends to the impact of oxytocin on social support-seeking behavior, focusing on a specific genetic variation, rs53576. The article explores how this genetic variation influences empathy, stress reactivity, and susceptibility to disorders such as autism and social anxiety. Furthermore, the article examines structural and functional changes in the brain associated with OXTR gene variations. It discusses the role of DNA methylation in influencing oxytocin receptor availability, affecting social perception and responsiveness to negative stimuli. The article also highlights the oxytocinergic system's involvement in disorders such as autism and social anxiety, emphasizing the interplay between genetics and environmental factors. The article also touches on the potential therapeutic use of exogenous oxytocin in mitigating symptoms associated with these disorders. In summary, the article underscores the intricate relationship between oxytocin, the OXTR gene, and diverse aspects of human behavior, providing insights into social bonding, perception, and the development of behavioral disorders.
Keyphrases
- mental health
- healthcare
- dna methylation
- genome wide
- copy number
- gene expression
- social support
- prefrontal cortex
- resting state
- endothelial cells
- autism spectrum disorder
- genome wide identification
- depressive symptoms
- functional connectivity
- intellectual disability
- white matter
- pregnant women
- sleep quality
- preterm infants
- blood brain barrier
- birth weight
- pluripotent stem cells
- genome wide analysis
- preterm birth
- human milk