Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19?
Marta MenegazziRachele CampagnariMariarita BertoldiRosalia CrupiRosanna Di PaolaSalvatore CuzzocreaPublished in: International journal of molecular sciences (2020)
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Keyphrases
- coronavirus disease
- respiratory syndrome coronavirus
- sars cov
- nuclear factor
- oxidative stress
- toll like receptor
- transcription factor
- signaling pathway
- clinical trial
- anti inflammatory drugs
- stem cells
- binding protein
- poor prognosis
- cell proliferation
- immune response
- intensive care unit
- risk assessment
- randomized controlled trial
- lps induced
- extracorporeal membrane oxygenation
- respiratory failure
- bone marrow
- mesenchymal stem cells
- climate change