Effects of NaCl on the Physical Properties of Cornstarch-Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System.
Juhee KimYoon Hyuk ChangYoung-Seung LeePublished in: Foods (Basel, Switzerland) (2023)
This study investigated the impact of NaCl on the physical properties of cornstarch-methyl cellulose (CS-MC) mixtures and their gels prepared with rice flour in a model system. Opposite trends were observed, showing that NaCl led to decreased viscosity of the CS-MC mixtures (liquid-based), whereas a more stable and robust structure was observed for the rice-flour-added gels (solid-based) with the addition of NaCl. The interference of NaCl with the CS-MS blend's ability to form a stable gel network resulted in a thinner consistency, as the molecules of the CS-MS blend may not bind together as effectively. On the contrary, NaCl showed the potential to enhance the protein network within CS-MC gels prepared with rice flour, thereby contributing to an augmentation in the stability or firmness of the cooked gels. Careful utilization of NaCl to optimize the physical properties of the CS-MC blends, as well as the gels based on rice flour, should be performed.