Transfer of a mobile Staphylococcus saprophyticus plasmid isolated from fermented seafood that confers tetracycline resistance.
Jong-Hoon LeeSojeong HeoMiran JeongDo-Won JeongPublished in: PloS one (2019)
The complete nucleotide sequence of a tetracycline-resistance gene (tetK)-carrying plasmid from a Staphylococcus saprophyticus isolate from jeotgal, a Korean high-salt-fermented seafood, was determined. The plasmid, designated pSSTET1, was 4439 bp in length and encoded typical elements found in plasmids that replicate via a rolling-circle mechanism, including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and a counter-transcribed RNA sequence. Additionally, the plasmid recombination enzyme gene (pre), which may be involved in inter-plasmid recombination and conjugation, was found. Each gene exhibited >94% sequence identity with those harbored in other Staphylococcus species. pSSTET1 was conditionally transferred to Staphylococcus species in a host-dependent manner and transferred to an Enterococcus faecalis strain in vitro. Antibiotic susceptibility of the transconjugants was host-dependent and transconjugants maintained a tetracycline-resistant phenotype in the absence of selective pressure over 100 generations.