Login / Signup

The 3-O-sulfation of heparan sulfate modulates protein binding and lyase degradation.

Pradeep ChopraApoorva JoshiJiandong WuWeigang LuTejabhiram YadavalliMargreet A WolfertDeepak ShuklaJoseph ZaiaGeert-Jan Boons
Published in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.
Keyphrases
  • binding protein
  • dna binding
  • poor prognosis
  • venous thromboembolism
  • herpes simplex virus
  • genome wide
  • high throughput
  • copy number
  • high resolution
  • long non coding rna
  • cell therapy
  • bone marrow
  • structural basis