Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A.
Atsushi YamagataKaori ItoTakehiro SuzukiNaoshi DohmaeTohru TeradaMikako ShirouzuPublished in: Nature communications (2024)
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 H C, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 H C through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Keyphrases
- positron emission tomography
- protein protein
- computed tomography
- electron microscopy
- pet ct
- structural basis
- binding protein
- pet imaging
- label free
- emergency department
- minimally invasive
- high throughput
- magnetic resonance
- transcription factor
- molecular dynamics simulations
- electronic health record
- capillary electrophoresis
- cell surface