High-throughput developability assays enable library-scale identification of producible protein scaffold variants.
Alexander W GolinskiKatelynn M MischlerSidharth LaxminarayanNicole L NeurockMatthew FossingHannah PichmanStefano MartinianiBenjamin J HackelPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Proteins require high developability-quantified by expression, solubility, and stability-for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 105 variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays' predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.
Keyphrases
- high throughput
- poor prognosis
- single cell
- machine learning
- binding protein
- copy number
- long non coding rna
- amino acid
- protein protein
- climate change
- small molecule
- deep learning
- artificial intelligence
- healthcare
- genome wide
- hepatitis c virus
- men who have sex with men
- social media
- gene expression
- cell free
- genetic diversity