All Ion Fragmentation Analysis Enhances the Untargeted Profiling of Glucosinolates in Brassica Microgreens by Liquid Chromatography and High-Resolution Mass Spectrometry.
Andrea CastellanetaIlario LositoGiovanni CisterninoBeniamino LeoniPietro SantamariaCosima Damiana CalvanoGiuliana BiancoTommaso R I CataldiPublished in: Journal of the American Society for Mass Spectrometry (2022)
An analytical approach based on reversed-phase liquid chromatography coupled to electrospray ionization Fourier-transform mass spectrometry in negative ion mode (RPLC-ESI-(-)-FTMS) was developed for the untargeted characterization of glucosinolates (GSL) in the polar extracts of four Brassica microgreen crops, namely, garden cress, rapeseed, kale, and broccoli raab. Specifically, the all ion fragmentation (AIF) operation mode enabled by a quadrupole-Orbitrap mass spectrometer, i.e., the systematic fragmentation of all ions generated in the electrospray source, followed by the acquisition of an FTMS spectrum, was exploited. First, the best qualifying product ions for GSL were recognized from higher-energy collisional dissociation (HCD)-FTMS 2 spectra of representative standard GSL. Extracted ion chromatograms (EIC) were subsequently obtained for those ions from RPLC-ESI(-)-AIF-FTMS data referred to microgreen extracts, by plotting the intensity of their signals as a function of retention time. The alignment of peaks detected in the EIC traces was finally exploited for the recognition of peaks potentially related to GSL, with the EIC obtained for the sulfate radical anion [SO 4 ] •- (exact m / z 95.9523) providing the highest selectivity. Each putative GSL was subsequently characterized by HCD-FTMS 2 analyses and by collisionally induced dissociation (CID) multistage MS n ( n = 2, 3) acquisitions based on a linear ion trap mass spectrometer. As a result, up to 27 different GSLs were identified in the four Brassica microgreens. The general method described in this work appears as a promising approach for the study of GSL, known and novel, in plant extracts.
Keyphrases
- liquid chromatography
- mass spectrometry
- high resolution mass spectrometry
- tandem mass spectrometry
- ultra high performance liquid chromatography
- high resolution
- gas chromatography
- simultaneous determination
- high performance liquid chromatography
- ms ms
- capillary electrophoresis
- solid phase extraction
- quantum dots
- transcription factor
- endothelial cells
- aqueous solution
- drug induced
- electronic health record
- arabidopsis thaliana
- water soluble
- density functional theory
- ionic liquid
- multiple sclerosis
- high intensity
- stress induced
- deep learning