Time-restricted feeding relieves high temperature-induced impairment on meat quality by activating the Nrf2/HO-1 pathway, modification of muscle fiber composition, and enriching the polyunsaturated fatty acids in pigs.
Zhaojian LiYiting WangPeng YuanYanli ZhuPing HuTongxing SongRui LiuHao-Yu LiuDemin CaiPublished in: Stress biology (2024)
To assess the effects of a time-restricted feeding (TRF) regimen on meat quality of pigs exposed to high ambient temperature, a two-month feeding and heat treatment (HT) trial was conducted using a 2 × 2 factorial design. A total of 24 growing pigs (11.0 ± 1.9 kg) were randomly divided into four groups: thermal neutral group (NT, 24 ± 3 °C), HT group (exposed to a high temperature at 35 ± 2 °C from 11:00 to 15:00), TRF group and HT + TRF group (HT and TRF co-treatment group, n = 6 for each group). Pigs in TRF groups got access to feed within 5 h from 9:00 to14:00, while the others were fed at 6:00, 11:30, and 16:00. All pigs received the same diet during the trail. The results showed that HT increased the drip loss, shear force, lightness, and malondialdehyde production in Longissimus thoracis et lumborum (LTL) muscle. TRF reversely reduced the shear force and drip loss, accompanied by decreased intramuscular fat and increased moisture content. Enhanced fiber transformation from type 1 to type 2b and down-regulated expression of muscle growth-related genes were observed by HT, while TRF suppressed the fiber transformation and expression of muscle atrophy-related genes. Furthermore, TRF restored the diminished protein expressions of Nrf2 and HO-1 in LTL muscle by chronic HT. Accumulation of HSP70 in muscle of HT group was reduced by treatment of TRF. HT declined the expression of vital genes involved in fatty acids poly-desaturation and the proportion of (polyunsaturated fatty acids) PUFAs, mainly omega-6 in LTL muscle, while TRF group promoted the expression of poly-desaturation pathway and displayed the highest proportion of PUFAs. These results demonstrated that TRF relieved the chronic high temperature affected meat quality by the restored expression of Nrf2/HO-1 anti-oxidative cascade, modified muscle fiber composition, and enriched PUFAs in LTL muscle.