Login / Signup

Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis.

Mengyao LuImann MoslehAlireza Abbaspourad
Published in: ACS synthetic biology (2021)
Human milk oligosaccharides (HMOs) are one of the important ingredients in human milk, which have attracted great interest due to their beneficial effect on the health of newborns. The large-scale production of HMOs has been researched using engineered microbial routes due to the availability, safety, and low cost of host strains. In addition, the development of molecular biology technology and metabolic engineering has promoted the effectiveness of HMOs production. According to current reports, 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), and some fucosylated HMOs with complex structures have been produced via the engineered microbial route, with 2'-FL having been produced the most. However, due to the uncertainty of metabolic patterns, the selection of host strains has certain limitations. Aside from that, the expression of appropriate glycosyltransferase in microbes is key to the synthesis of different HMOs. Therefore, finding a safe and efficient glycosyltransferase has to be addressed when using engineered microbial pathways. In this review, the latest research on the production of HMOs using engineered microbial routes is reported. The selection of host strains and adapting different metabolic pathways helped researchers designing engineered microbial routes that are more conducive to HMOs production.
Keyphrases