Login / Signup

Furanosyl Oxocarbenium Ion Conformational Energy Landscape Maps as a Tool to Study the Glycosylation Stereoselectivity of 2-Azidofuranoses, 2-Fluorofuranoses and Methyl Furanosyl Uronates.

Stefan van der VormThomas HansenErwin R van RijsselRolf DekkersJerre M MadernHerman S OverkleeftDmitri V FilippovGijsbert A van der MarelJeroen D C Codée
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
The 3D shape of glycosyl oxocarbenium ions determines their stability and reactivity and the stereochemical course of SN 1 reactions taking place on these reactive intermediates is dictated by the conformation of these species. The nature and configuration of functional groups on the carbohydrate ring affect the stability of glycosyl oxocarbenium ions and control the overall shape of the cations. We herein map the stereoelectronic substituent effects of the C2-azide, C2-fluoride and C4-carboxylic acid ester on the stability and reactivity of the complete suite of diastereoisomeric furanoses by using a combined computational and experimental approach. Surprisingly, all furanosyl donors studied react in a highly stereoselective manner to provide the 1,2-cis products, except for the reactions in the xylose series. The 1,2-cis selectivity for the ribo-, arabino- and lyxo-configured furanosides can be traced back to the lowest-energy 3 E or E3 conformers of the intermediate oxocarbenium ions. The lack of selectivity for the xylosyl donors is related to the occurrence of oxocarbenium ions adopting other conformations.
Keyphrases
  • quantum dots
  • aqueous solution
  • molecular dynamics simulations
  • water soluble
  • risk assessment
  • single cell
  • ionic liquid
  • saccharomyces cerevisiae