Login / Signup

Acetate Upregulates GPR43 Expression and Function via PI3K-AKT-SP1 Signaling in Mammary Epithelial Cells during Milk Fat Synthesis.

Yang YangChuanping LiuCaiyan ZhangZiru XuLi ZhangYingjun CuiChunmei WangYe LinXiaoming Hou
Published in: Journal of agricultural and food chemistry (2023)
This study investigated the mechanism underlying acetate-induced orphan G-protein-coupled receptor 43 (GPR43) expression and milk fat production. The mammary epithelial cells of dairy cows were treated with acetate, and the effects of GPR43 on acetate uptake and the expression of lipogenesis-related genes were determined by gas chromatography and quantitative polymerase chain reaction (qPCR), respectively. RNAi, inhibitor treatment, and luciferase assay were used to determine the effect of phosphoinositide 3-kinase-protein kinase B-specificity protein 1 (PI3K-AKT-SP1) signaling on acetate-induced GPR43 expression and function. The results showed that GPR43 was highly expressed in lactating cow mammary tissues, which was related to milk fat synthesis. 12 mM acetate significantly increased the GPR43 expression in mammary epithelial cells of dairy cows. In acetate-treated cells, GPR43 overexpression significantly increased the cellular uptake of acetate, the intracellular triacylglycerol (TAG) content, and acetate-induced lipogenesis gene expression. Acetate activated PI3K-AKT signaling and promoted SP1 translocation from the cytosol into the nucleus, where SP1 bound to the GPR43 promoter and upregulated GPR43 transcription. Moreover, the activation of PI3K-AKT-SP1 by acetate facilitated the trafficking of GPR43 from the cytosol to the plasma membrane. In conclusion, acetate upregulated GPR43 expression and function via PI3K-AKT-SP1 signaling in mammary epithelial cells, thereby increasing milk fat synthesis. These results provide an experimental strategy for improving milk lipid synthesis, which is important to the dairy industry.
Keyphrases