Sphingosine 1-Phosphate Receptor 1 Is Required for MMP-2 Function in Bone Marrow Mesenchymal Stromal Cells: Implications for Cytoskeleton Assembly and Proliferation.
Chiara SassoliFederica PierucciAlessia TaniAlessia FratiFlaminia ChelliniFrancesca MatteiniAmbra VestriGiulia AnderloniDaniele NosiSandra Zecchi-OrlandiniElisabetta MeacciPublished in: Stem cells international (2018)
Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair.
Keyphrases
- bone marrow
- cell migration
- cell proliferation
- mesenchymal stem cells
- extracellular matrix
- poor prognosis
- stem cells
- endothelial cells
- signaling pathway
- binding protein
- single cell
- cell therapy
- cell cycle
- electronic health record
- fatty acid
- sensitive detection
- transcription factor
- smoking cessation
- stress induced
- quantum dots
- fluorescent probe