Login / Signup

Gut microbiome mediates ferroptosis resistance for colorectal cancer development.

Ruoxi ZhangRui KangDaolin Tang
Published in: Cancer research (2024)
Colorectal cancer (CRC) is a prevalent cancer type in the United States, affecting both genders and influenced by genetics and environmental factors. The role of the gut microbiome in CRC development and therapy response is a burgeoning field of study. A recent study uncovered that trans-3-indoleacrylic acid (IDA), a microbial metabolite from P. anaerobius, promotes CRC by inhibiting ferroptosis, a type of non-apoptotic cell death driven by unrestricted lipid peroxidation and subsequent membrane damage. IDA activates aryl hydrocarbon receptor (AHR), a nuclear transcription factor, leading to the expression of aldehyde dehydrogenase 1 family member A3 (ALDH1A3). ALDH1A3, known for aldehyde detoxification, also contributes to ferroptosis resistance by generating reduced nicotinamide adenine dinucleotide (NADH), critical for the synthesis of reduced coenzyme Q10 (COQH10) by apoptosis inducing factor mitochondria associated 2 (AIFM2, also known as FSP1). Knocking out AHR, AIFM2, or ALDH1A3 reverses the inhibitory effect of IDA on ferroptosis and IDA-mediated tumor growth. Significantly, P. anaerobius is enriched in CRC patients, and supplementing IDA or P. anaerobius accelerates CRC progression in spontaneous or orthotopic mouse models. Taken together, these findings suggest that targeting P. anaerobius-mediated ferroptosis resistance emerges as a promising strategy to combat CRC development.
Keyphrases