Fast and Simple UPLC-Q-TOF MS Method for Determination of Bitter Flavan-3-ols and Oligomeric Proanthocyanidins: Impact of Vegetable Protein Fining Agents on Red Wine Composition.
Lara DiasJuliana MilheiroMiguel RibeiroCristina FernandesNuno NevesLuís Filipe-RibeiroFernanda CosmeFernando M NunesPublished in: Foods (Basel, Switzerland) (2023)
Wine phenolic compounds, particularly proanthocyanidins (PAs), play a significant role in wine sensory characteristics, specifically bitterness and astringency. Although not consensual, flavan-3-ols and oligomeric PAs are generally considered the primary contributors to wine bitterness. Patatin, a vegetable protein fining agent, has been explored as an alternative to animal and synthetic fining agents for reducing wine bitterness. However, contradictory results exist regarding its effectiveness in removing flavan-3-ols and oligomeric PAs in red wines. In this work, a UPLC-Q-TOF MS/MS method was optimized and validated for accurately measuring flavan-3-ols, as well as dimeric and trimeric PAs, in red wines. The MS/MS analysis of flavan-3-ols, in addition to the typical fragmentation described in the literature, revealed an intense mass fragment resulting from the loss of C 3 O 2 and C 3 O 2 + H 2 O from the parent ion. It was observed that flavan-3-ols and PAs undergo oxidation during sample preparation, which was reversed by the addition of 5 g/L of ascorbic acid. The method demonstrated good linearity range (2 mg/L to 20 mg/L), detection limit (0.3 mg/L to 0.7 mg/L), quantification limit (0.8 mg/L to 2.2 mg/L), precision (repeatability 2.2% to 7.3%), and accuracy (recovery 98.5% to 100.5%). The application of patatin at different doses (5 g/L to 30 g/L) in two different red wine matrices did not reduce the levels of monomeric, dimeric, and trimeric PAs in red wines. However, similar behaviors were observed for pea protein and gelatin. Therefore, wine fining trials and efficiency measurements of the treatments in each matrix are strongly advised.