High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues.
Qishan LiangTao YuEric KofmanPratibha JagannathaKevin RhineBrian A YeeKevin D CorbettGene W YeoPublished in: Nature communications (2024)
RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.