Maternal high-fat diet changes DNA methylation in the early embryo by disrupting the TCA cycle intermediary alpha ketoglutarate.
Alexander PennNicole O McPhersonTod FullstonBridget ArmanDeirdre Zander-FoxPublished in: Reproduction (Cambridge, England) (2023)
Maternal obesity can impair offspring metabolic health; however, the precise mechanism underpinning programming is unknown. Ten-Eleven translocase (TET) enzymes demethylate DNA using the TCA cycle intermediary α-ketoglutarate and may be involved in programming offspring health. Whether TETs are disrupted by maternal obesity is unknown. Five to six week-old C57Bl/6 female mice were fed a control diet (CD; 6% fat, n = 175) or a high-fat diet (HFD; 21% fat, n = 158) for 6 weeks. After superovulation, oocytes were collected for metabolic assessment, or females were mated and zygotes were cultured for embryo development, fetal growth, and assessment of global DNA methylation (5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC)) in the two-cell embryo. Zygotes collected from superovulated CBAF1 females were cultured in media containing α-ketoglutarate (0, 1.4, 3.5, or 14.0 mM) or with 2-hydroxyglutarate (2HG) (0 or 20 mM), a competitive inhibitor of α-ketoglutarate, with methylation and blastocyst differentiation assessed. After HFD, oocytes showed increased pyruvate oxidation and intracellular ROS, with no changes in Tet3 expression, while two-cell embryo global 5hmC DNA methylation was reduced and 5fC increased. Embryos cultured with 1.4 mM α-ketoglutarate had decreased two-cell 5mC, while 14.0 mM α-ketoglutarate increased the 5hmC:5mC ratio. In contrast, supplementation with 20 mM 2HG increased 5mC and decreased 5fC:5mC and 5caC:5mC ratios. α-ketoglutarate up to 3.5 mM did not alter embryo development, while culturing in 14.0 mM α-ketoglutarate blocked development at the two-cell. Culture with 2HG delayed embryo development past the four-cell and decreased blastocyst total cell number. In conclusion, disruptions in metabolic intermediates in the preimplantation embryo may provide a link between maternal obesity and programming offspring for ill health.
Keyphrases
- high fat diet
- insulin resistance
- pregnancy outcomes
- adipose tissue
- dna methylation
- single cell
- high fat diet induced
- type diabetes
- weight loss
- metabolic syndrome
- healthcare
- public health
- cell therapy
- gene expression
- birth weight
- genome wide
- pregnant women
- endothelial cells
- physical activity
- weight gain
- randomized controlled trial
- skeletal muscle
- magnetic resonance
- poor prognosis
- clinical trial
- binding protein
- fluorescent probe
- long non coding rna
- copy number
- bone marrow
- hydrogen peroxide
- body mass index
- preterm birth
- human health
- resting state
- nk cells